Compare Means

Dr. Anahita Babak

Assistant Professor, Community and family medicine department, Isfahan University of Medical Sciences

Email: babakanahita@yahoo.com

Compare Means

Parametric

- One sample t- test
- Paired samples t-test
- Independent samples t-test
- One-way ANOVA

Nonparametric

- Wilcoxon signed-rank test
- Mann Whitney U-test
- Kruscal wallis

One Sample t - Test

- examines whether the mean of a population is statistically different from a known or hypothesized value
- is also known as Single Sample t -Test
- the test variable's mean is compared against a "test value", which is a known or hypothesized value of the mean in the population
- Test values may come from a literature review, a trusted research organization, legal requirements, or industry standards

Common Uses

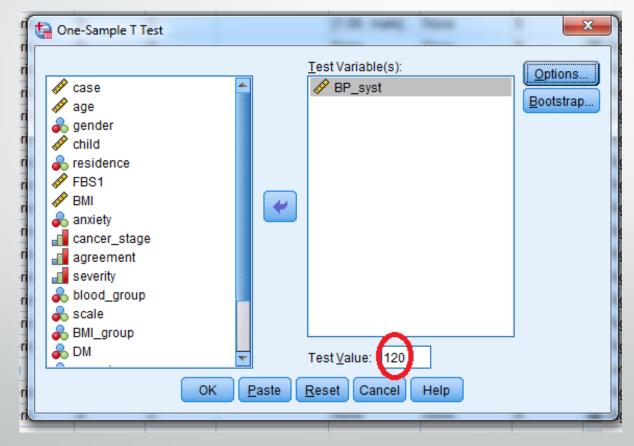
- Statistical difference between a mean and a known or hypothesized value of the mean in the population.
- Statistical difference between a change score and zero:

 creating a change score from two variables, and then comparing the mean change score to zero, if the mean change score is not significantly different from zero, no significant change occurred

Data Requirements

- Test variable that is continuous
- Scores on the test variable are independent
- Random sample of data from the population
- Normal distribution (approximately) of the sample and population on the test variable (Among moderate or large samples, a violation of normality may still yield accurate *p* values)
- Homogeneity of variances (i.e., variances approximately equal in both the sample and population)

No outliers

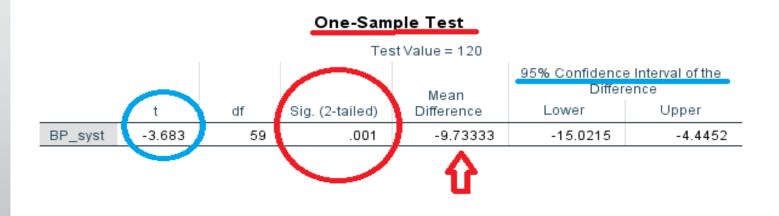

Hypotheses

- The null hypothesis (H₀) and (two-tailed) alternative hypothesis (H₁) of the one sample T test can be expressed as:
- H₀: μ = μ₀ ("the population mean is equal to the [proposed] population mean")
 H₁: μ ≠ μ₀ ("the population mean is not equal to the [proposed] population mean")

Running the test

PSS Statistics	Data Edito	r	_			-	-	_	
[ransform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> til	ities	E <u>x</u> tensions	<u>W</u> indow <u>H</u>	lelp	
Reports Descriptive Statistics		7 7		- 1962 -	- S		Ø		
Тур	Ta <u>b</u> le	S		•		Values	Missing	Columns	1
Numeric	Comp	oare Means		•	MM	eans	1		🗏 Rig
Numeric	<u>G</u> eneral Linear Model			•			🗏 Rig		
Numeric					One- <u>S</u> ample T Test				
Numeric	Mi <u>x</u> ed Models		10		🚠 In		🔳 Rig		
Numeric					+ S	ा≣ Rig			
Numeric	<u>C</u> orre			•		圖 Rig			
Numeric	<u>R</u> egre	ession				ne-Way ANOV	A		≡ Rig
Numeric	L <u>o</u> glir	near		• I		lone	None	8	≡ Rig
Numeric	Neura	al Net <u>w</u> orks		•	{	1.00, no}	None	8	≡ Rig
Numeric	Class	si <u>f</u> y		•		lone	None	8	≣ Rig
Numeric	<u>D</u> ime	nsion Reduction		۶.	-	1.00, stron	None	8	≡ Rig
Numoric	Sc <u>a</u> le			•	•	1.00 mild1	Nono	8	= Dia

Running the test (cont.)



Output

T-Test

sav.فایل تمرین\تدریس آمار پزشکی\آمار\.R

One-Sample Statistics									
	N	Mean	Std. Deviation	Std. Error Mean					
BP_syst	60	110.2667	20.47062	2.64275					

Decision and Conclusions

- Our hypothesized population value was 120 mmHg (the average BP of the overall adult population)
- Our sample value was 110.26 mmHg
- Since p = 0.001, we reject the null hypothesis that the mean BP of the sample is equal to the hypothesized population mean
- We conclude that the mean BP is significantly different than 120 mmHg

Based on the results, we can state the following:

- There is a significant difference in the mean BP of the sample and the overall adult population (p = 0.001)
- The average BP of the sample is about 9.74 mmHg lower than the adult population average [95% CI (-15) - (-4.4)]

Paired samples t-test

- Compares two means that are from the same individual, object, or related units.
- The two means can represent things like:
- A measurement taken at two different times (e.g., pre-test and post-test with an intervention administered between the two time points)
- A measurement taken under two different conditions (e.g., completing a test under a "control" condition and an "experimental" condition)
 - Measurements taken from two halves or sides of a subject or experimental unit (e.g., measuring hearing loss in a subject's left and right ears).

Paired samples t-test cont.

- The purpose of the test is to determine whether there is statistical evidence that the mean difference between paired observations is significantly different from zero
- This test is also known as: Dependent *t* Test, Paired *t* Test, Repeated Measures *t* Test
- The variable used in this test is known as:
- Dependent variable, or test variable (continuous), measured at two different times or for two related conditions or units

Common Uses

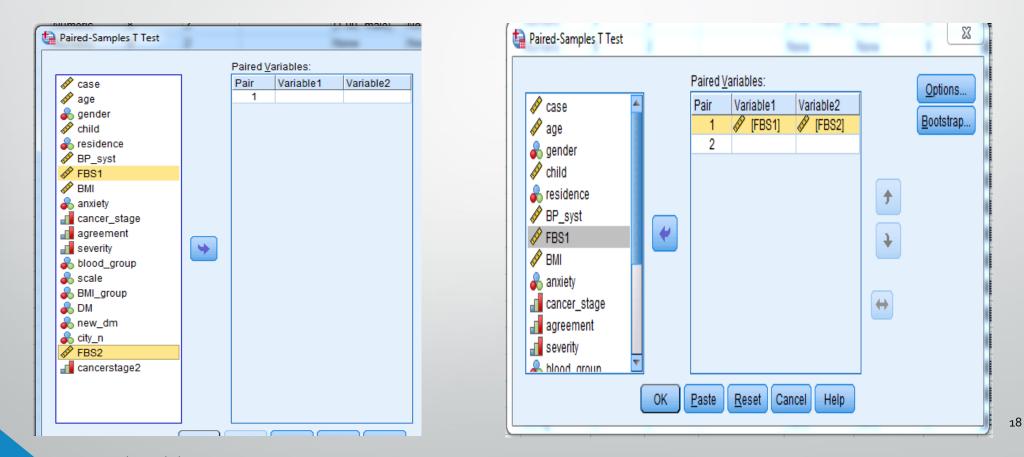
- Statistical difference between two time points
- Statistical difference between two conditions
- Statistical difference between two measurements
- Statistical difference between a matched pair

Data Requirements

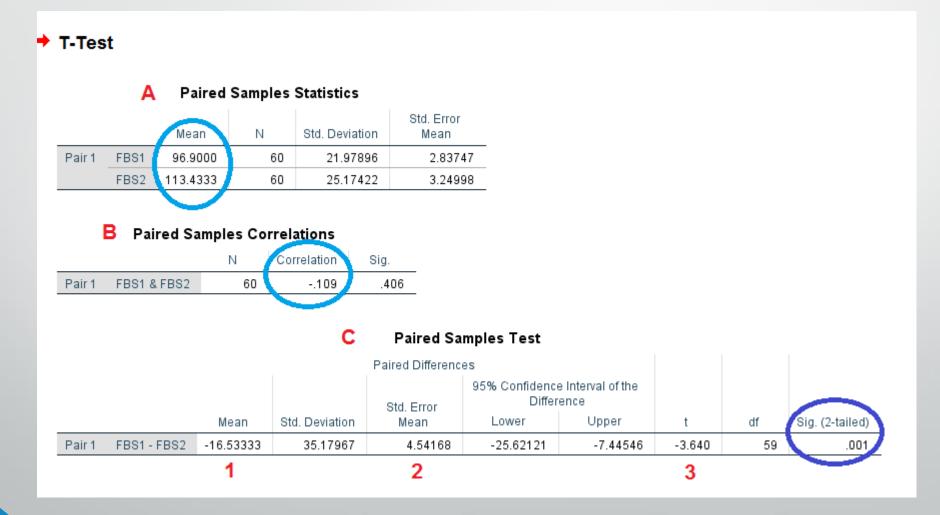
- Dependent variable that is continuous (i.e., interval or ratio level)
 - Note: The paired measurements must be recorded in two separate variables.
- Related samples/groups (i.e., dependent observations)
 - The subjects in each sample, or group, are the same. This means that the subjects in the first group are also in the second group.
- Random sample of data from the population
- Normal distribution (approximately) of the difference between the paired values
- No outliers in the difference between the two related groups

Hypotheses

H₀: μ₁ = μ₂ ("the paired population means are equal")
 H₁: μ₁ ≠ μ₂ ("the paired population means are not equal")


• OR

H₀: μ₁ - μ₂ = o ("the difference between the paired population means is equal to o")
 H₁: μ₁ - μ₂ ≠ o ("the difference between the paired population means is not o")


Running the test

Analyze Direct Marketing Graphs	: <u>U</u> ti	lities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp		
Re <u>p</u> orts D <u>e</u> scriptive Statistics	•			- 4 2		Q	
Ta <u>b</u> les			Values	Missing	Columns		
Co <u>m</u> pare Means		ММ	eans			圖 Ri	
<u>G</u> eneral Linear Model				act		III Ri	
Generalized Linear Models		 One-<u>S</u>ample T Test Independent-Samples T Test Summary Independent-Samples T Test 					
 Mixed Models							
-							
<u>C</u> orrelate		🔜 Paired-Samples T Test					
<u>R</u> egression		l o	ne-Way ANOV/	A		疅 Ri	
L <u>o</u> glinear	•		None	None	8	三 Ri	
Neural Net <u>w</u> orks	•	{	1.00, no}	None	8	≡ Ri	
Classify	•		Vone	None	8	圖 Ri	
Dimension Reduction	•		1.00, stron	None	8	≡ Ri	
Sc <u>a</u> le	•		1.00, mild}		8	≣ Ri	

Running the test (cont.)

Output

Decision And Conclusions

- FBS1 and FBS2 were weakly and negatively correlated (r = -0.109, p = 0.4).
- There was a significant average difference between FBS1 and FBS2 (p = 0.001).
- On average, FBS2 was 16.5 mg/dl higher than FBS1 [95% CI (-25.6, -7.44)]

Independent Samples t Test

- Compares the means of two independent groups in order to determine whether there is statistical evidence that the associated population means are significantly different
- is also known as: Independent *t* Test, Student *t* Test
- The variables used in this test are known as:
- Dependent variable, or test variable
- ✓ Independent variable, or grouping variable

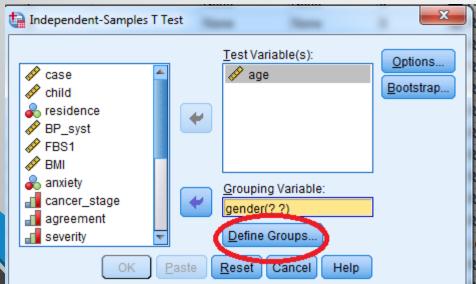
Common Uses

- Statistical differences between the means of two groups
- Statistical differences between the means of two interventions
- Statistical differences between the means of two change scores

Data Requirements

- Dependent variable that is continuous (i.e., interval or ratio level)
- Independent variable that is categorical (i.e., two groups)
- Cases that have values on both the dependent and independent variables
- Independent samples/groups (i.e., independence of observations)
- Random sample of data from the population
- Normal distribution (approximately) of the dependent variable for each group
- Homogeneity of variances (i.e., variances approximately equal across groups)
- No outliers

Hypotheses


H₀: μ₁ = μ₂ ("the two population means are equal")
 H₁: μ₁ ≠ μ₂ ("the two population means are not equal")

• OR

• $H_0: \mu_1 - \mu_2 = o$ ("the difference between the two population means is equal to o") $H_1: \mu_1 - \mu_2 \neq o$ ("the difference between the two population means is not o")


Running the test

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> til	ities	Extension	s <u>W</u> indow	<u>H</u> elp	
Re <u>p</u> o	rts		•					A
D <u>e</u> scr	riptive Statistics		•		1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	→ □□□□	14
Ta <u>b</u> le	s		۶.		Values	Missir	ng Co	lumns
Co <u>m</u> p	oare Means		•	M Me	eans			
<u>G</u> ene	ral Linear Model		•	C Or	ne- <u>S</u> ample '	T Test		
Gene	rali <u>z</u> ed Linear Mode	ls	•	🔠 In	dependent-	Samples T Te	est	
Mi <u>x</u> ed	Models		•	_		ependent-Sar		act
<u>C</u> orre	late		•		-		inpres i in	551
<u>R</u> egre	ession		•			les T Test		
L <u>og</u> lin	iear		•		ne-Way ANC			
Neura	al Net <u>w</u> orks		۶.		one	None	8	

Define Groups
Use specified values
Group <u>1</u> : 1
Group <u>2</u> : 2
© <u>C</u> ut point:
Continue Cancel Help

Output

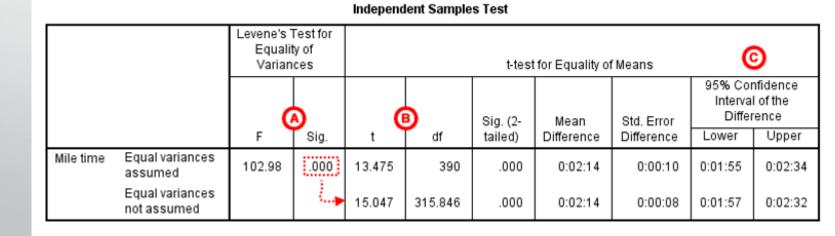
26

Decision and Conclusions

The mean age in female was 1.76 years greater than men

• But

• This difference was not significant (p=0.63).


Levene's Test for Equality of Variances

- The hypotheses for Levene's test are:
- $H_0: \sigma_1^2 \sigma_2^2 = o$ ("the population variances of group 1 and 2 are equal") $H_1: \sigma_1^2 - \sigma_2^2 \neq o$ ("the population variances of group 1 and 2 are not equal")
- This implies that if we reject the null hypothesis of Levene's Test, it suggests that the variances of the two groups are not equal; i.e., that the homogeneity of variances assumption is violated.

Output

Group Statistics

	Are you an athlete?	Ν	Mean	Std. Deviation	Std. Error Mean
Mile time	Non-athlete	226	0:09:06	0:02:01.668	0:00:08.093
	Athlete	166	0:06:51	0:00:49.464	0:00:03.839

Interpretation

The *p*-value of Levene's test is printed as ".ooo" (but should be read as *p* < 0.001 -i.e., *p* very small), so we we reject the null of Levene's test and conclude that the variance in mile time of athletes is significantly different than that of non-athletes. This tells us that we should look at the "Equal variances not assumed" row for the *t* -test (and corresponding confidence interval) results.

Decision and Conclusions

 There was a significant difference in mean mile time between nonathletes and athletes (t_{315.846} = 15.047, p < .001).

 The average mile time for athletes was 2 minutes and 14 seconds faster than the average mile time for non-athletes

One-Way ANOVA

- The one-way analysis of variance (ANOVA) is used to determine whether there are any statistically significant differences between the means of three or more independent (unrelated) groups.
- The variables used in this test are known as:
- ✓ Dependent variable
- \checkmark Independent variable (also known as the grouping variable, or *factor*)
 - This variable divides cases into two or more mutually exclusive *levels*, or groups

Common Uses

- Statistical differences among the means of two or more groups
- Statistical differences among the means of two or more interventions
- Statistical differences among the means of two or more change scores

Assumptions

- dependent variable: measured at the continuous level
- independent variable: 3 or more categorical, independent groups
- independence of observations
- no significant outliers
- dependent variable: approximately normally distributed for each category of the independent variable
- homogeneity of variances

Hypotheses

- H₀: μ₁ = μ₂ = μ₃ = ... = μ^k ("all k population means are equal")
 H₁: At least one μⁱ different ("at least one of the k population means is not equal to the others")
- where
- μⁱ is the population mean of the ith group (*i* = 1, 2, ..., *k*)

Run the test

	Analyze	Direct <u>M</u> arketing	Graphs	Util	ities	Extensio	ons	Window	He	lp	
	Repo				×,					(Q
/F	_			•		Value	5	Missin	g	Columns	
ic	Comp	are Means		•	M M	eans					3
ic	<u>G</u> ene	<u>G</u> eneral Linear Model			One-Sample T Test						
ic	Gene	Generalized Linear Models			The design dead Operation Transf						in in
ic	Mi <u>x</u> ed	Mixed Models									
ic	<u>Corre</u>	<u>C</u> orrelate				- aired-San					
ic	Regre	ession		•		ne-Way Al					1
ic				•		lone		None		8	Ē
ic		al Net <u>w</u> orks		•	{	1.00, no}		None		8	1
	Class	ifu		P							

2	None None	8 🖷 K
🔄 One-Way ANOVA		×
 ✓ case ✓ age ✓ gender ✓ child ✓ residence ✓ FBS1 ✓ BMI ✓ anxiety ✓ cancer stage 	Dependent List:	Co <u>n</u> trasts Post <u>H</u> oc Options Bootstrap Help
V(Statist ✓ De ✓ Eix ✓ Ho Bro We e Missin © Exc ○ Exc	Way ANOVA: Options tics scriptive ed and random effects mogeneity of variance test own-Forsythe elch ans plot ng Values clude cases analysis by analys clude cases listwise ntinue Cancel Help	is 36

Oneway

BP_syst

Output

Descriptives

						95% Confidence Interval for Mean				Between- Component
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	Variance
normal		26	99.8462	18.05257	3.54040	92.5546	107.1377	75.00	135.00	
overwei	ght	16	121.2500	21.40872	5.35218	109.8421	132.6579	80.00	150.00	
obese		18	115.5556	16.16904	3.81108	107.5149	123.5962	85.00	140.00	
Total		60	110.2667	20.47062	2.64275	104.9785	115.5548	75.00	150.00	
Model	Fixed Effects			18.48035	2.38580	105.4892	115.0442			
	Random Effects				6.82198	80.9141	139.6193			117.07827

Test of Homogeneity of Variances

BP_syst Levene Statistic df1 df2 Sig. 1.029 2 57 .364

ANOVA

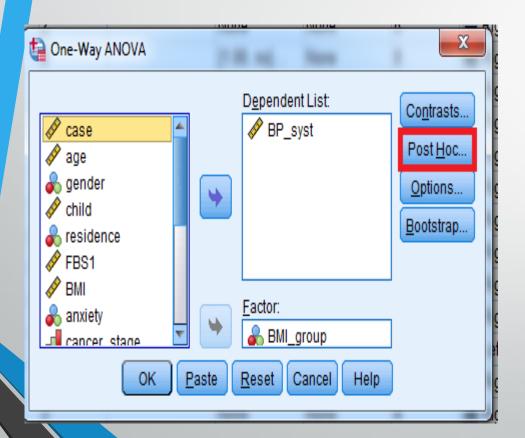
BP_syst

•

_

	Sum of			_	01
	Squares	df	Mean Square	F	Sig.
Between Groups	5256.904	2	2628.452	7.696	.001
Within Groups	19466.829	57	341.523		
Total	24723.733	59			

Dr. Anahita Babak


37

Discussion and conclusions

 We conclude that the mean systolic BP is significantly different for at least one of the BMI groups

Note that the ANOVA alone does not tell us specifically which means were different from one another. To determine that, we would need to follow up with *multiple comparisons* (or *post-hoc*) tests.

Post-Hoc test

ta One-Way ANOVA	Post Hoc Multiple Co	omparisons			
Equal Variances /	Assumed				
<mark>∢ L</mark> SD	🔲 <u>S</u> -N-К	🕅 <u>W</u> aller-Duncan			
🔲 <u>B</u> onferroni	🔲 <u>T</u> ukey	Type I/Type II Error Ratio: 100			
Sidak	🔲 Tu <u>k</u> ey's-b	Dunnett			
Scheffe	📃 <u>D</u> uncan	Control Category : Last 👻			
📃 <u>R</u> -E-G-W F	📃 <u>H</u> ochberg's GT2	2 Test			
🔲 R-E-G-W <u>Q</u>	🔲 <u>G</u> abriel	$\textcircled{O} 2$ -sided $\textcircled{O} < C_{\underline{O}}$ ntrol $\textcircled{O} > Control$			
Equal Variances I	Not Assumed	🔲 G <u>a</u> mes-Howell 📄 D <u>u</u> nnett's C			
Signi <u>f</u> icance level: 0.05					
Cancel Help					

Post Hoc Tests

Dependent Var LSD	iable: BP_syst					
		Mean Difference (l-			95% Confide	ence Interval
(I) BMI_group	(J) BMI_group	J)	Std. Error	Sig.	Lower Bound	Upper Bound
normal	overweight	-21.40385	5.87203	.001	-33.1624	-9.6453
	obese	-15.70940	5.66648	.008	-27.0563	-4.3625
overweight	normal	21.40385	5.87203	.001	9.6453	33.1624
	obese	5.69444	6.34970	.374	-7.0206	18.4095
obese	normal	15.70940	5.66648	.008	4.3625	27.0563
	overweight	-5.69444	6.34970	.374	-18.4095	7.0206

*. The mean difference is significant at the 0.05 level.

Dr. Anahita Babak

Multiple Comparisons

Wilcoxon signed-rank test

- The Wilcoxon signed rank test should be used if the differences between pairs of data are non-normally distributed.
- The null hypothesis for this test is that the medians of two samples are equal.
 - This test is parametric equivalent of paired dependent samples t-test

Assumptions

- The dependent variable should be measured at the ordinal or continuous level (Likert items, IQ score, VAS 0-10)
- The independent variable should consist of two categorical, "related groups" or "matched pairs". "Related groups" indicates that the same subjects are present in both groups

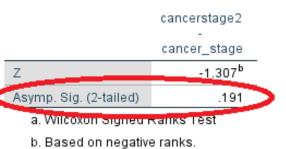
Running the test

n	Analyze Direct Marketing Graphs	Ut	ilities	E <u>x</u> tensio	ns <u>W</u> indow	H	elp		
0	Re <u>p</u> orts	•			💻 🖾 📕		A	6	ABC
	Descriptive Statistics	•					19		
	Ta <u>b</u> les	۰.			1	1		-	1
	Co <u>m</u> pare Means	•	-	FBS2	cancersta	I	var	var	var
UU	<u>G</u> eneral Linear Model	•	U	125.00	gez				
00	Generalized Linear Models	۶.	0	122.00					
00	Mi <u>x</u> ed Models	۶.	0	141.00	1.00				
00	<u>C</u> orrelate	•	0	85.00	2.00				
00	<u>R</u> egression	•	0	86.00	3.00				
00	Loglinear	•	0	89.00	1.00				
00	Neural Net <u>w</u> orks	۶.	0	79.00	1.00				
00	Classify	۶.	0	88.00	1.00				
00	Dimension Reduction	۶.	0	96.00	2.00				
00	Sc <u>a</u> le	۶.	0	97.00	2.00				
00	<u>N</u> onparametric Tests	•	<u>∧</u> <u>O</u> r	e Sample	e				
00	Forecasting	۶.	A Inc	dependen	t Samples				
00	<u>S</u> urvival	۶.		elated San	-				
00	M <u>u</u> ltiple Response	۶.		egacy Dial		•	M Chi	0.011070	-
00	🌠 Missing Value Analysis							-square	
00	Multiple Imputation	۶.	0	99.00			0/1 <u>B</u> in		_
00	Comp <u>l</u> ex Samples	۶.	0	120.00			AAAB <u>R</u> ur		-
00	₩ Simulation		0	110.00			<u> 1</u> -S	ample K-S	
00	Quality Control	•	0	152.00			🚺 <u>2</u> In	dependent S	amples
.00	ROC Curve		0	115.00 68.00			🚺 <u>K</u> In	dependent S	am p les
.00			0	99.00			📉 2 R	e <u>l</u> ated Sampl	es
00			0		2.00				

Running the test (cont.)

 Two-Related-Samples Tests case age gender child residence P_syst FBS1 FBS1 BMI anxiety cancer_stage agreement severity blood_group 		est Pairs: air 1 2	Variable1 [cancer_ [cancer_		Variable2	rstage2]	 ★ ↔ 	E <u>x</u> act Options
				<u> </u>				

NPar Tests


Wilcoxon Signed Ranks Test

Ranks

		Ν	Mean Rank	Sum of Ranks
cancerstage2 -	Negative Ranks	20 ^a	17.60	352.00
cancer_stage	Positive Ranks	22 ^b	25.05	551.00
	Ties	18°		
	Total	60		

- a. cancerstage2 < cancer_stage
- b. cancerstage2 > cancer_stage
- c. cancerstage2 = cancer_stage

Rank

Group #	Treatment 1	Treatment 2	Difference
1	2.5	4.0	1.5
2 3	3.5	5.6	2.1
_	2.9	3.2	0.3
4	2.1	1.9	-0.2
5	6.9	9.5	2.6
6	2.4	2.3	-0.1
7.	4.9	6.7	1.8
8	6.6	6.0	-0.6
9	2.0	3.5	1.5
10	2.0	4.0	2.0
11	5.8	8.1	2.3
12	7.5	19.9	12.4

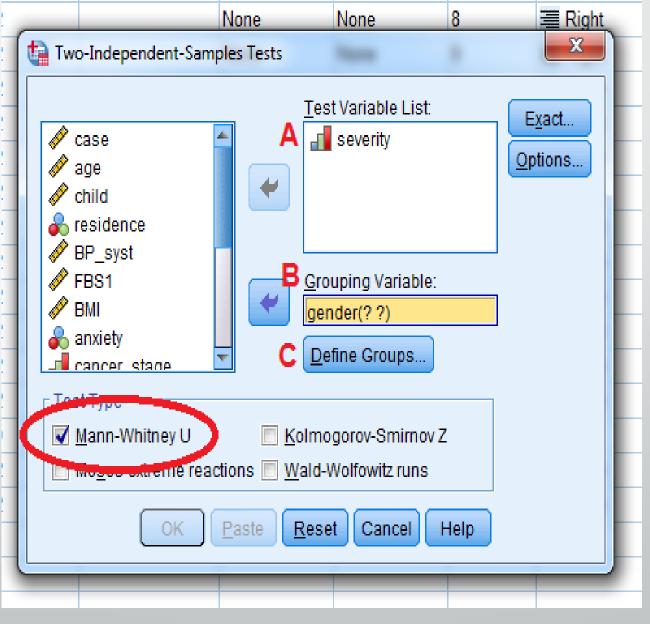
Rank	Ds in Order
1	0.1
2	0.2
	0.3
4. 5	0.6
5	1.5
6.	1.5
7.	1.8
8	2.0
9.	2.1
10.	2.3
11.	2.6
12	12.4

Mann Whitney U-test

- The Mann-Whitney U test is used to compare differences between two independent groups when the dependent variable is either ordinal or continuous, but not normally distributed
- Equivalent Parametric test: independent samples t-test
- The null hypothesis asserts that the *medians* of the two samples are identical.

Assumptions

- dependent variable should be measured at the ordinal or continuous level (Likert items, IQ score...)
- independent variable should consist of two categorical, independent groups (gender, smoker...)
- independence of observations (there is no relationship between the observations in each group or between the groups themselves. For example, there must be different participants in each group with no participant being in more than one group.)
- A Mann-Whitney U test can be used when your two variables are not normally distributed


Running the test

Analyze

tics Data Editor <u>U</u>tilities Extensions Window Direct Marketing Graphs <u>H</u>elp Reports ABC Descriptive Statistics Columns Align Values Missing Measure Ta<u>b</u>les 🔗 Scale None 8 ■ Right lone Compare Means 🔗 Scale None 8 I Right lone General Linear Model 💑 Nominal None 8 Right 1.00, male}. Generalized Linear Models Scale 🔗 8 Right lone None Mixed Models None 8 Right 💑 Nominal 1.00, urban. Correlate Scale 🔗 8 Right None lone Regression 🔗 Scale 8 Right None lone Loglinear 🔗 Scale 8 Right None lone Neural Networks None 8 Right 💑 Nominal 1.00, no}... Classify Right Ordinal None 8 lone Dimension Reduction Ordinal None 8 I Right 1.00, stron... Sc<u>a</u>le Ordinal 1.00, mild}. None 8 Right Nonparametric Tests \delta Nominal 💧 One Sample... I Right Forecasting I Right \delta Nominal // Independent Samples... Survival 💑 Nominal Right Related Samples... Multiple Response Legacy Dialogs 🄏 <u>C</u>hi-square... 🚰 Missing Value Analysis... 1.00, nonn... Inone TU 0/1 Binomial... None 8 lone Multiple Imputation Runs... 8 .00, Isfaha... None Complex Samples A 1-Sample K-S... 8 None Vone Simulation... 🔼 2 Independent Samples... Quality Control 🔣 K Independent Samples... ROC Curve... 2 Related Samples... Spatial and Temporal Modeling...

111

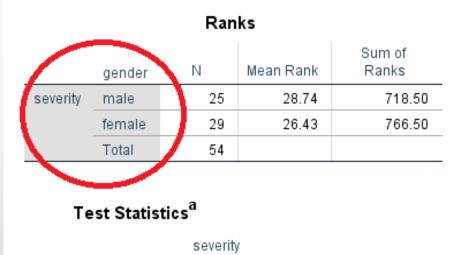
Running the test (cont.)

NPar Tests

Mann-Whitney U

Asymp. Sig. (2-tailed)

gender


a. Grouping variable.

Wilcoxon W

Ζ

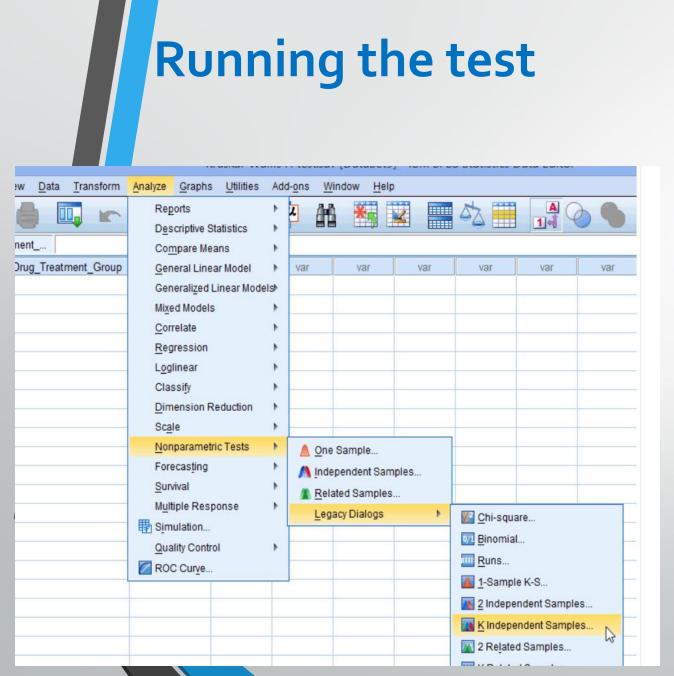
sav.فایل تمرین\تدریس آمار پزشکی\آمار\.R

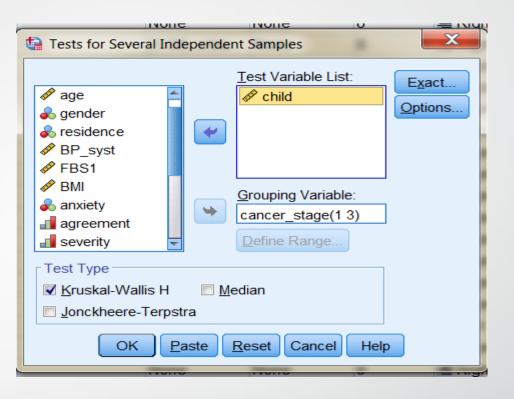
Mann-Whitney Test

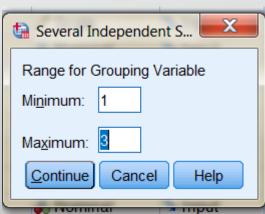
331.500

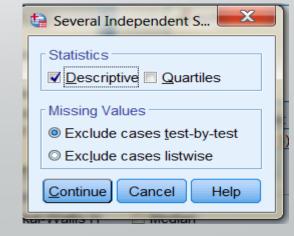
766.500

-.573


.566


Kruskal-Wallis Test


- can be used to determine if there are statistically significant differences between two or more groups of an independent variable on a continuous or ordinal dependent variable.
- It is considered the nonparametric alternative to ANOVA
- Example:
- dependent variable: "exam performance" on a continuous scale from o-100
- independent variable: "low", "medium" and "high" test anxiety levels


Assumptions

- dependent variable measured at the ordinal or continuous level
- independent variable consist of 3 or more categorical, independent groups
- independence of observations

Descriptive Statistics

	Ν	Mean	Std. Deviation	Minimum	Maximum
child	60	2.5667	1.57702	.00	6.00
cancer_stage	60	1.7333	.82064	1.00	3.00

Kruskal-Wallis Test

Ranks

	cancer_stage	N	Mean Rank
child	1.00	30	21.10
	2.00	16	37.38
	3.00	14	42.79
	Total	60	

Test Statistics^{a,b}

	child		
Chi-Square	18.739		
df	2		
Asymp. Sig.	.000		
a. Kruskal Test	Wallis		
b. Grouping Variable: cancer_stage			

References

- Introduction to Biostatistics and Research Methods, fifth edition,
 P.S.S Sunder Rao, Dr. PH (2012)
- URL: https://libguides.library.kent.edu/SPSS
- https://statistics.laerd.com/