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By Steven N. Goodman

I
magine the American Physical Society 

convening a panel of experts to issue a 

missive to the scientific community on the 

difference between weight and mass. And 

imagine that the impetus for such a mes-

sage was a recognition that engineers and 

builders had been confusing these concepts 

for decades, making bridges, buildings, and 

other components of our physi-

cal infrastructure much weaker 

than previously suspected.

That, in a sense, is what happened with 

the recent release of a statement from the 

American Statistical Association (ASA), with 

the deceptively innocuous title, “ASA state-

ment on statistical significance and p-values” 

(1). The scientific measure in need of clari-

fication was the P value—perhaps the most 

ubiquitous statistical index used in scientific 

research to help decide what is true and what 

is not. The ASA saw misunderstanding and 

misuse of statistical significance as a factor 

in the rise in concern about the credibility of 

many scientific claims (sometimes called the 

“reproducibility crisis”) and is hoping that its 

official statement on the matter will help set 

scientists on the right course.

The formal definition of P value is the prob-

ability of an observed data summary (e.g., an 

average) and its more extreme va lues, given 

a specified mathematical model and hypoth-

esis (usually the “null”). The problem is that 

this index by itself is not of particular interest. 

What scientists want is a measure of the cred-

ibility of their conclusions, based on observed 

data. The P value neither measures that nor 

is it part of a formula that provides it.

This confusion between the index we have 

and the measure we want produces miscon-

ceptions that the P value is the probability 

that the null hypothesis is true or that the 

observed data occurred by chance—differ-

ent ways of saying the same thing (2, 3). This 

pernicious error creates the illusion that the 

P value alone measures the credibility of a 

conclusion, which opens the door to the mis-

taken notion that the dividing line between 

scientifically justified and unjustified claims 

 is set by whether the P value has crossed the 

“bright line” of significance, to the exclusion 

of external considerations like prior evidence, 

understanding of mechanism, or experimen-

tal design and conduct. 

Bright-line thinking, coupled with atten-

dant publication and promotion incentives, 

is a driver behind selective reporting: cherry-

picking which analyses or experiments to 

report on the basis of their P values. This in 

turn corrupts science and fills the literature 

with claims likely to be overstated or false. 

We cannot solve these problems without un-

derstanding how we got to this point.

R. A. Fisher revolutionized statistical infer-

ence and experimental design in the 1920s 

and ’30s by establishing a comprehensive 

framework for statistical reasoning and 

writing the first statistical best-seller for ex-

perimenters. He formalized an approach to 

inference involving P values and assessment 

 of significance, based on the frequentist no-

tion of probability, defined in terms of veri-

fiable frequencies of repeatable events. He 

wanted to avoid the subjectivity of the Bayes-

ian approach, in which the probability of a 

hypothesis (“inverse probability”), neither re-

peatable nor observable, was central. 

Fisher was a champion of P values as one of 

several tools to aid the fluid, inductive proc-

ess of scientific reasoning—not to substitute 

for it. Fisher used “significance” merely to in-

dicate that an observation was worth follow-

ing up, with refutation of the null hypothesis 

justified only if further experiments “rarely 

failed” to achieve significance (4). This is in 

stark contrast to the modern practice of mak-

ing claims based on a single demonstration 

of statistical significance.

In their development of “hypothesis test-

ing” in the 1930s, Jerzy Neyman and Egon 
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B. Likelihood functions

A. How can these d ata be interpreted?

Changing questions, changing answers. Three randomized trials show response rates of 20% in the control arm 

and rates in the treatment arms of (1) 26% (n = 900), (2) 40% (n = 100), and (3) 26% (n = 500). The effect deemed 

clinically important is 10%. (A) Each statistical approach asks a different question, hence interpretations are different. 

Scientists must decide which statistical question best matches their scientific question. (B) Likelihood functions, 

proportional to the probability of the observed data (vertical axis) under each possible true effect (horizontal axis), 

measure how strongly the observed effects support different true effects (which cannot be directly observed). 

POLICY

APPROACH QUESTION
STATISTICAL 
ANALYSIS INTERPRETATION

Hypothesis test 
(“bright line”)

Should we act as though the observed 
effect is nonzero (given prespecified 
error rates)?

1. P ≤ 0.05
2. P ≤ 0.05
3. NS

Studies 1 and 2 indicate action based 
on a nonzero true effect is justified. 
Study 3 indicates it is not.

Fisherian P value How much evidence is there that the 
true effect is different from zero?

1.  P = 0.03
2. P = 0.05
3. P = 0.11

Studies 1 and 2 provide moderate, 
statistically significant evidence that 
the new treatment is better. Study 3 
supplies weak but insufficient 
evidence to say the treatment is 
effective.

Estimation What range of true effects is statisti-
cally consistent with the observed 
effects?

Effect, 95% confi-
dence interval (%)
1. 6, 0.5 to 12
2. 20, 2.5 to 38
3. 6, –1.4 to 13

Studies 1 and 3 indicate the new 
treatment had a small to moderate 
effect. Study 2 is consistent with 
either small or large effects.

Bayes factor How strongly do the data support 
a large, clinically important effect 
(10 to 25%) versus a small, 
unimportant one (0 to 10%)?

Bayes factor, 
large:small effect
1. 1:14
2. 3:1
3. 1:7

Studies 1 and 3 together decrease 
odds of an important effect 98 
fold (1/7 x 1/14 = 1/98), Study 2 
increases odds 3 fold, for net 33 fold 
decrease (3 x 1/98 = 1/33).
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Pearson went where Fisher was unwilling 

to go (5). In a hypothesis test, one specifies 

a null statistical hypothesis and an alterna-

tive, and is to “reject” the null and “accept” 

the alternative—or vice versa—on the basis 

of whether an estimate falls into a prespeci-

fied region defined by two error rates: type I 

(alpha, false positive) and type II (beta, false 

negative). Once these error rates are set, sci-

entific reasoning is effectively out of the pic-

ture (see the figure). Judgment ideally enters 

through customization of the alternative hy-

pothesis and the error rates, contingent on 

the seriousness of each kind of error. 

The Neyman-Pearson method did not 

use P values, but was combined with the 

F isherian P-value approach in textbooks 

and research articles (6, 7). Without foun-

dational justification, this created the il-

lusion that quantitative inference could 

be automated, with hypothesis rejection 

determined by whether the P value is less 

than the type I error, set at 5% in most sci-

ences today. This combination did violence 

to both approaches, particularly to Fisher’s. 

He vehemently opposed using P values for 

automatic inference, referring to hypothesis 

tests disparagingly as “decision functions” 

or “acceptance procedures.” His dismay was 

pointed and prescient:

[N]o scientific worker has a fixed level of 

significance at which from year to year, 

and in all circumstances, he rejects hy-

potheses; he [examines] each particular 

case in the light ofÖevidence andÖideas 

[p. 42 of (8)].

The concept that the scientific worker 

can regard himself as an inert item in a 

vast co-operative concern working accord-

ing to accepted rules, is encouraged by 

directing attention away from his duty to 

form correct scientific conclusions,…and 

by stressing his supposed duty to mechani-

cally make a succession of automatic “de-

cisions”.... The idea that this responsibility 

can be delegated to a giant computer pro-

grammed with Decision Functions belongs 

to a phantasy of circles, ra ther remote 

from scientific research [pp. 104–105 (8)].

Sixty years later, we have the ASA express-

ing the same sentiment: 

Researchers should bring many contextual 

factors into play to derive scientific infer-

ences, including the design of a study, the 

quality of the measurements, the external 

evidence for the phenomenon under study, 

and the validity of assumptions that un-

derlie the data analysisÖ. The widespread 

use of “statistical significance” (generally 

interpreted as “p ≤ 0.05”) as a license for 

making a claim of a scientific finding (or 

implied truth) leads to considerable distor-

tion of the scientific process (1).

The concordance of these statements, sepa-

rated by over half a century, underscores 

lack of progress in approaches to statistical 

inference in the applied literature, despite 

advances in statistical methodology. This is 

due in part to the way statistical inference is 

taught to scientists; not as a variety of named, 

competing approaches, each with strengths 

and weaknesses, but as anonymized proce-

dures, universally applicable, seemingly with-

out controversy or alternatives (6, 7).

Contrast this situation with other sciences. 

In any high-school physics textbook, one will 

find theories and models by Copernicus, Gal-

ileo, Newton, Einstein, and so on. Students 

are trained to understand the incomplete 

explanatory power of each theory, the contro-

versies, why new theories were accepted (or 

not), and what questions they raised. 

Theories of statistical inference are no less 

nuanced or contested, as evidenced by the 23 

commentaries that followed the ASA state-

ment (1). But such controversy, rarely taught 

in applied courses or texts, is unappreciated 

by most who use statistical tools. This seem-

ing absence of controversy about the founda-

tions of these methods has fostered growth 

of social-scientific structures reifying those 

values—enshrined in journal practices, pro-

motion, and funding criteria, as well as in the 

standard discourse of science—which makes 

them extraordinarily difficult to change.

Another reason these practices persist is 

that, until the recent rise of concern about 

research reprod ucibility (9), the scientific 

community has perceived few adverse con-

sequences from their use. Many papers over 

the past century have issued cautions simi-

lar to those of the ASA, but have largely been 

ignored by the general scientific community. 

Benefits of having seemingly objective rules 

have outweighed theoretical cavils (6, 10).

The ASA suggested several ways to im-

prove statistical interpretation, including 

more complete reporting of all analyses per-

formed, and a number of alternative inferen-

tial approaches. One of these, Bayes factors 

(11, 12), is a measure derived from Bayes theo-

rem indicating how strongly the data should 

shift belief toward one hypothesis versus an-

other. If we were told that the experimental 

results lowered the prestudy odds of the null 

hypothesis by a factor of 4, this would lead 

to a far different reasoning process than does 

“P = 0.03,” which is difficult to combine with 

external knowledge (11) (see the chart). 

Bayes factors and fully Bayesian analyses 

are not without their own complications (10, 

12–15), as are all other recommended ap-

proaches. But, if they were more widely used, 

rules would evolve. That said, no P-value al-

ternatives will solve the problems noted by 

the ASA if they are used in bright-line fash-

ion, such as applying a confidence interval 

only to see if it includes the null value.

P values are unlikely to disappear, and the 

ASA did not recommend their elimination—

rather, a change in how they are interpreted 

and used. But how can scientists follow the 

ASA (and Fisher’s) dictates to combine them 

with contextual factors? There are few ex-

amples in the scientific literature. How many 

papers explain why, in one context, a finding 

with P = 0.006 is insufficient to make a claim, 

whereas, in another, P = 0.08 might be all 

that is needed (11)? Any attempt to do that 

in an individual research paper would likely 

meet resistance from reviewers or editors. 

The field of genomics has shown us that 

evidential thresholds are changeable within 

disciplines, with P ≤ 10–8 now sought for 

claiming relations derived from genome-

wide scanning. Thresholds in physics are far 

lower than the P ≤ 0.05 level used in biomed-

icine and the social sciences. Whether such 

thresholds can or should be modified by de-

sign, by discipline, or by individual study are 

rich areas for future exploration (16).

Science has progressed dramatically over 

the past 90 years, despite these issues. How 

much faster and more efficiently can it pro-

ceed if new statistical approaches to infer-

ence are adopted, and if optimal statistical 

and scientific practices are aligned with in-

centive structures? The ASA has posed a chal-

lenge to all who use statistical measures to 

justify their claims. Let us  hope the next cen-

tury will see as much progress in the inferen-

tial methods of science as in its substance.        j 
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“Theories of statistical 
inference are…nuanced 
[and]  contested….”
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