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SERIES ON STATISTICS
Nonparametric vs Parametric Tests of Location in Biomedical
Research
CHRISTINA M. R. KITCHEN
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HE CHOICE OF STATISTICAL TEST HAS A PROFOUND

impact on the interpretation of data. Understanding
this choice is important for the critical evaluation of

he biomedical literature. The question often arises
hether to use nonparametric or parametric tests. The
test is the most widely used statistical test for comparing
he means of 2 independent groups. This parametric test
ssumes that the data are distributed normally, that sam-
les from different groups are independent, and that the
ariances between the groups are equal. The most com-
only used nonparametric test in this situation is the
ilcoxon rank-sum test (WRST) and the closely related
ann–Whitney U test. The WRST assumes that observa-

ions from the different groups are random samples (ie,
ndependent and identically distributed) from their respec-
ive populations and are mutually independent and that
he observations are ordinal or continuous measurements.

hen there are k groups (treatments), the nonparametric
est is the Kruskal–Wallis test (KW), a generalization of
he WRST. KW is the nonparametric equivalent to
nalysis of variance (ANOVA). Using nonparametric tests
nstead of parametric tests brings about 2 questions: 1)

hat happens if the nonparametric test is used when the
arametric assumptions are met?; and 2) What happens
hen the parametric assumptions are not met?
To answer these questions, one must first discuss the

nderlying goal of the study. Usually in biomedical appli-
ations one is interested in measures of location such as the
ean. One can test if the treatment (experimental condi-

ion) has an effect (location shift) on the population under
tudy. For example, one may be interested in the effect of
reatment(s) on a specific measurement, say cell count,
ompared to the control. Data of this nature are often
nalyzed with the t test, or if there are k � 2 groups,
NOVA. In the parametric case, one tests for differences

n the means among the groups. In the nonparametric case,
quivalents the location statistic is the median.

The assumptions for the nonparametric test are weaker
han those for the parametric test, and it has been stated
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hat when the assumptions are not met, it is better to use
he nonparametric test. However, real data are rarely
xactly normal.1–3 Does this mean that one should never
se the t test? In many datasets seen in the biomedical
ciences, there often exist several observations that differ
rom the others, the so-called outliers. One must also then
onsider what is the best summary statistic for central
endency. That is, there should be some concept of
obustness to assess the properties of the estimators them-
elves. Robustness, in one sense, refers to the insensitivity
f the estimator to outliers or violations in underlying
ssumptions. One concept of robustness is the breakdown
oint.4 The breakdown point is defined as fraction of data
hat can be arbitrary (corrupted) without making the
stimator arbitrarily bad. For example, the sample mean is
efined as: x1 � x2 � . . . � xn/n. If we let any one of the
bservations (say xn) get arbitrarily large, the mean will
ecome arbitrarily large. This means that even if an
nvestigator has only one large outlier, the mean is arbi-
rary. Thus, the breakdown point for the mean is 0. The
edian, which is commonly used when data are skewed or

here exist outliers, is defined as the central value in a
istribution where above and below lie an equal number of
alues. Intuitively, one can see that if we let a minority of
bservations go to infinity, the median will not be arbi-
rarily bad. The breakdown point of the median is half; this
s the highest breakdown point. From the point of robust-
ess and breakdown point, the mean is a good estimator
nly if the data have zero outliers (no “heavy” tails) and no
kewness (symmetry of normal distribution is kept), and
here is unimodality. The median is more insensitive to
hese departures from normality. Nonparametric methods
uch as the WRST and KW use the median and are thus
obust in this sense.

If there exist departures from normality, it seems pru-
ent, in the sense of robustness, to use the nonparametric
est. However, one must consider the cost, in terms of
ower, of applying the nonparametric test when indeed the
ata are distributed normally and satisfy the other assump-
ions of the parametric test. With this comes the notion of
symptotic Relative Efficiency (ARE). The ARE, simply

efined, is how many more subjects are needed for the
onparametric test to have equivalent power to the para-

etric test for a fixed Type I error rate �. If the ARE � 1,
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hen the 2 tests have equal power for the same number of
ubjects. AREs �1 indicate that the parametric test is
ore powerful and AREs �1 indicate that the nonpara-
etric test has more power. The ARE of the WRST vs the
test when the underlying assumptions of the t test are

atisfied is 0.955.5–7 Similarly, KW vs ANOVA has an
RE of 0.955. However, these nonparametric tests are
uch more powerful than their parametric counterparts
hen the underlying distributions are heavy-tailed or have
xtreme skewness.5,6,8–10 In some cases the ARE became
nfinite. Thus, there is minimal power loss associated with
he nonparametric tests even when the data are distributed
ormally, while the power gains of these tests when
ormality is violated are substantial.
As the sample sizes become infinite, the parametric tests

re robust to departures from normality. However, because
f cost and potential risks to humans and animals, many of
he sample sizes in the biomedical literature are far from
nfinite. Thus, it is prudent to examine the properties of
hese estimators when the sample size is small (�25 per
roup). The small sample properties of the WRST vs the
test have been studied extensively.1,5–9 The WRST has
een shown to be as powerful in small samples as the t test
nder the location shift alternatives and can be much more

owerful than the t test under certain nonnormality n

192.
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onditions.5,6 Monte Carlo experiments found that for
ests of location shift, the WRST was the best test in
lmost all cases.8 Further, in some small-sample Monte
arlo simulations the WRST was more powerful than the
test even when the two samples were independent,

dentically normally distributed.8 The WRST had large
ower advantages over the t test in small sample sizes for
istributions that possessed extreme asymmetry or where
here existed a point mass at 0.1 Moreover, under normal-
ty conditions with small samples, ANOVA performed
nly slightly better than KW. However, when the distri-
utions were mixtures of normals, exponential, or double-
xponential, KW was substantially more powerful.10

Data are often nonnormal in the biomedical sciences1–3,11

nd the sample sizes are often small. In data where there
xists skewness, extreme asymmetries, multimodality, or
eavy tails, nonparametric tests such as WRST and KW
ffer a very satisfactory alternative to parametric tests,
specially in small samples. Taken together, these results
uggest that when the data are distributed normally and all
f the other assumptions are met, there is relatively little
oss in terms of power to use WRST or KW and there can
e almost infinite gains when these assumptions are not
et. Because of this, one should consider using the

onparametric test of location for the primary analysis.
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