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Data Analysis: Simple Statistical Tests  
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It’s the middle of summer, prime 
time for swimming, and your local 
hospital reports several children with 
Escherichia coli O157:H7 infection.  
A preliminary investigation shows 
that many of these children recently 
swam in a local lake.  The lake has 
been closed so the health depart-
ment can conduct an investigation.  
Now you need to find out whether 
swimming in the lake is significantly 
associated with E. coli infection, so 
you’ll know whether the lake is the 
real culprit in the outbreak.  This 
situation occurred in Washington in 
1999, and it’s one example of the 
importance of good data analysis, 
including statistical testing, in an 
outbreak investigation. (1)   

The major steps in basic data analy-
sis are: cleaning data, coding and 
conducting descriptive analyses; 
calculating estimates (with confi-
dence intervals); calculating meas-
ures of association (with confidence 
intervals); and statistical testing.   

In earlier issues of FOCUS we dis-
cussed data cleaning, coding and 
descriptive analysis, as well as calcu-
lation of estimates (risk and odds) 
and measures of association (risk 
ratios and odds ratios).  In this issue, 
we will discuss confidence intervals 
and p-values, and introduce some 
basic statistical tests, including chi 
square and ANOVA.   

Before starting any data analysis, it 
is important to know what types of 
variables you are working with.  The 
types of variables tell you which esti-
mates you can calculate, and later, 
which types of statistical tests you 
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 C O N T R I B U T O R S  

should use.  Remember, continuous 
variables are numeric (such as age in 
years or weight) while categorical vari-
ables (whether yes or no, male or fe-
male, or something else entirely) are 
just what the name says—categories.   

For continuous variables, we generally 
calculate measures such as the mean 
(average), median and standard de-
viation to describe what the variable 
looks like.  We use means and medi-
ans in public health all the time; for 
example, we talk about the mean age 
of people infected with E. coli, or the 
median number of household con-
tacts for case-patients with chicken 
pox.   

In a field investigation, you are often 
interested in dichotomous or binary 
(2-level) categorical variables that 
represent an exposure (ate potato 
salad or did not eat potato salad) or 
an outcome (had Salmonella infection 
or did not have Salmonella infection).  
For categorical variables, we cannot 
calculate the mean or median, but we 
can calculate risk.  Remember, risk is 
the number of people who develop a 
disease among all the people at risk 
of developing the disease during a 
given time period.  For example, in a 
group of firefighters, we might talk 
about the risk of developing respira-
tory disease during the month follow-
ing an episode of severe smoke inha-
lation.  

 

Measures of Association 

We usually collect information on ex-
posure and disease because we want 
to compare two or more groups of 
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people.  To do this, we calculate measures of association.  
Measures of association tell us the strength of the asso-
ciation between two variables, such as an exposure and a 
disease.  The two measures of association that we use 
most often are the relative risk, or risk ratio (RR), and the 
odds ratio (OR).  The decision to calculate an RR or an OR 
depends on the study design (see box below).  We inter-
pret the RR and OR as follows: 

RR or OR = 1:  exposure has no association with disease 

RR or OR > 1:  exposure may be positively associated 
with disease 

RR or OR < 1:  exposure may be negatively associated 
with disease 

This is a good time to discuss one of our favorite analysis 
tools—the 2x2 table.  You should be familiar with 2x2 ta-
bles from previous FOCUS issues.  They are commonly 
used with dichotomous variables to compare groups of 
people.  The table has one dichotomous variable along the 
rows and another dichotomous variable along the col-
umns.  This set-up is useful because we usually are inter-
ested in determining the association between a dichoto-
mous exposure and a dichotomous outcome.  For exam-
ple, the exposure might be eating salsa at a restaurant (or 
not eating salsa), and the outcome might be Hepatitis A (or 
no Hepatitis A).  Table 1 displays data from a case-control 
study conducted in Pennsylvania in 2003. (2) 

So what measure of association can we get from this 2x2 
table?  Since we do not know the total population at risk 
(everyone who ate salsa), we cannot determine the risk of 
illness among the exposed and unexposed groups.  That 
means we should not use the risk ratio.  Instead, we will 
calculate the odds ratio, which is exactly what the study 

authors did.  They found an odds ratio of 19.6*, meaning 
that the odds of getting Hepatitis A among people who ate 
salsa were 19.6 times as high as among people who did 
not eat salsa.   

 *OR     =     ad     =     (218)(85)     =     19.6 
       bc              (45)(21) 
 
Confidence Intervals 

How do we know whether an odds ratio of 19.6 is mean-
ingful in our investigation?  We can start by calculating the 
confidence interval (CI) around the odds ratio.  When we 
calculate an estimate (like risk or odds), or a measure of 
association (like a risk ratio or an odds ratio), that number 
(in this case 19.6) is called a point estimate.  The confi-
dence interval of a point estimate describes the precision 
of the estimate.  It represents a range of values on either 
side of the estimate.  The narrower the confidence inter-
val, the more precise the point estimate. (3)  Your point 
estimate will usually be the middle value of your confi-
dence interval. 

An analogy can help explain the confidence interval.  Say 
we have a large bag of 500 red, green, and blue marbles.  
We are interested in knowing the percentage of green mar-
bles, but we do not have the time to count every marble. 
So we shake up the bag and select 50 marbles to give us 
an idea, or an estimate, of the percentage of green mar-
bles in the bag.  In our sample of 50 marbles, we find 15 
green marbles, 10 red marbles, and 25 blue marbles.  

Based on this sample, we can conclude that 30% (15 out 
of 50) of the marbles in the bag are green.  In this exam-
ple, 30% is the point estimate.  Do we feel confident in 
stating that 30% of the marbles are green?  We might 
have some uncertainty about this statement, since there is 
a chance that the actual percent of green marbles in the 
entire bag is higher or lower than 30%.  In other words, our 
sample of 50 marbles may not accurately reflect the ac-
tual distribution of marbles in the whole bag of 500 mar-
bles.  One way to determine the degree of our uncertainty 
is to calculate a confidence interval.   

 Outcome 

  Hepatitis A No Hepatitis 
A Total 

Ate salsa 218 45 263 

Did not 
eat salsa 21 85 106 

Total 239 130 369 

Exposure  

Table 1.  Sample 2x2 table for Hepatitis A at Restaurant A. 

Risk ratio or odds ratio? 

The risk ratio, or relative risk, is used when we look at a 
population and compare the outcomes of those who 
were exposed to something to the outcomes of those 
who were not exposed.  When we conduct a cohort 
study, we can calculate risk ratios.  

However, the case-control study design does not allow us 
to calculate risk ratios, because the entire population at 
risk is not included in the study.  That’s why we use odds 
ratios for case-control studies.  An odds ratio is the odds 
of exposure among cases divided by the odds of expo-
sure among controls, and it provides a rough estimate of 
the risk ratio.  

So remember, for a cohort study, calculate a risk ratio, 
and for a case-control study, calculate an odds ratio.  For 
more information about calculating risk ratios and odds 
ratios, take a look at FOCUS Volume 3, Issues 1 and 2.   
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The most commonly used confidence interval is the 95% 
interval.  When we use a 95% confidence interval, we con-
clude that our estimated range has a 95% chance of con-
taining the true population value (e.g., the true percentage 
of green marbles in our bag).  Let’s assume that the 95% 
confidence interval is 17-43%.  

How do we interpret this?  Well, we estimated that 30% of 
the marbles are green, and the confidence interval tells us 
that the true percentage of green marbles in the bag is 
most likely between 17 and 43%.  However, there is a 5% 
chance that this range (17-43%) does not contain the true 
percentage of green marbles.   

In epidemiology we are usually comfortable with this 5% 
chance of error, which is why we commonly use the 95% 
confidence interval.  However, if we want less chance of 
error, we might calculate a 99% confidence interval, which 
has only a 1% chance of error.  This is a trade-off, since 
with a 99% confidence interval the estimated range will be 
wider than with a 95% confidence interval.  In fact, with a  
99% confidence interval, our estimate of the percentage of 
green marbles is 13-47%.  That’s a pretty wide range!  On 
the other hand, if we were willing to accept a 10% chance 
of error, we can calculate a 90% confidence interval (and 
in this case, the percentage of green marbles will be 19-
41%).   

Ideally, we would like a very narrow confidence interval, 
which would indicate that our estimate is very precise.  
One way to get a more precise estimate is to take a larger 
sample.  If we had taken 100 marbles (instead of 50) from 
our bag and found 30 green marbles, the point estimate 
would still be 30%, but the 95% confidence interval would 
be  a range of 21-39% (instead of our original range of 17-
43%).  If we had sampled 200 marbles and found 60 
green marbles, the point estimate would be 30%, and with 
a 95% confidence interval the range would be 24-36%.  
You can see that the confidence interval becomes nar-
rower as the sample size increases.  

Let’s go back to our example of Hepatitis A in the Pennsyl-
vania restaurant for one final review of confidence inter-
vals.  The odds ratio was 19.6, and the 95% confidence 
interval for this estimate was 11.0-34.9.  This means there 
was a 95% chance that the range 11.0-34.9 contained the 
true odds ratio of Hepatitis A among people who ate salsa 
compared with people who did not eat salsa.  Remember 
that an odds ratio of 1 means that there is no difference 
between the two groups, while an odds ratio greater than 
1 indicates a greater risk among the exposed group.  The 
lower bound of the confidence interval was 11.0, which is 
greater than 1.  That means we can conclude that the peo-
ple who ate salsa were truly more likely to become ill than 
the people who did not eat salsa.  

It’s necessary to include confidence intervals with your 
point estimates.  That way you can give a sense of the pre-
cision of your estimates.  Here are two examples: 

• In an outbreak of gastrointestinal illness at two pri-
mary schools in Italy, investigators reported that chil-
dren who ate a cold salad of corn and tuna had 6.19 
times the risk of becoming ill of children who did not 
eat salad (95% confidence interval: 4.81-7.98). (4) 

• In a community-wide outbreak of pertussis in Oregon 
in 2003, case-patients had 6.4 times the odds of liv-
ing with a 6-10 year-old child than controls (95% confi-
dence interval: 1.8-23.4). (5) 

In both of these examples, one can conclude that there 
was an association between exposure and disease. 

Calculating Confidence Intervals 

So how do you calculate a confidence interval?  It’s cer-
tainly possible to do so by hand.  Most of the time, how-
ever, we use statistical programs such as Epi Info, SAS, 
STATA, SPSS, or Episheet to do the calculations.  The 
default is usually a 95% confidence interval, but this can 
be adjusted to 90%, 99%, or any other level depending 
on the desired level of precision.  

For those interested in calculating confidence intervals 
by hand, the following resource may be helpful: 

Giesecke, J. Modern Infectious Disease Epidemiology. 
2nd Ed. London: Arnold Publishing; 2002. 

Resources for further study: 

• Washington State Department of Health. Guidelines for Using Confidence Intervals for Public Health Assessment. 
http://www.doh.wa.gov/Data/Guidelines/ConfIntguide.htm 

• Swinscow TDV. Chapter 8: The Chi-Square Test. Statistics at Square One. 9th Ed. BMJ Publishing Group; 1997. 
http://bmj.bmjjournals.com/collections/statsbk/8.shtml 

• Simple Interactive Statistical Analysis http://home.clara.net/sisa/two2hlp.htm 
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Analysis of Categorical Data  

You have calculated a measure of association (a risk ratio 
or odds ratio), and a confidence interval for a range of val-
ues around the point estimate.  Now you want to use a 
formal statistical test to determine whether the results are 
statistically significant.  Here, we will focus on the statisti-
cal tests that are used most often in field epidemiology.  
The first is the chi-square test.  

Chi-Square Statistics 

As noted earlier, a common analysis in epidemiology in-
volves dichotomous variables, and uses a 2x2 table.  We 
want to know if Disease X occurs as much among people 
belonging to Group A as it does among people belonging to 
Group B.  In epidemiology, we often put people into groups 
based on their exposure to some disease risk factor.  

To determine whether those persons who were exposed 
have more illness than those not exposed, we perform a 
test of the association between exposure and disease in 
the two groups.  Let’s use a hypothetical example to illus-
trate this.  Let’s assume there was an outbreak of Salmo-
nella on a cruise ship, and investigators conducted a retro-
spective cohort study to determine the source of the out-
break.  They interviewed all 300 people on the cruise and 
found that 60 had symptoms consistent with Salmonella 
(Table 2a).  Questionnaires indicated that many of the 
case-patients ate tomatoes from the salad bar.  Table 2a 
shows the number of people who did and did not eat toma-
toes from the salad bar. 

To see if there is a significant difference in the amount of 
illness between those who ate tomatoes (41/130 or 32%) 
and those who did not (19/170 or 11%), one test we could 
conduct is a handy little statistic called χ2  (or chi-square).  
In order to calculate a run-of-the mill chi-square, the follow-
ing conditions must be met:  
• There must be at least a total of 30 observations 

(people) in the table. 
• Each cell must contain a count of 5 or more. 

To conduct a chi-square test, we compare the observed 
data (from our study results) to the data we would expect 
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to see.  So how do we know what data would be expected?   
We need to know the size of our population, so we start 
with the totals from our observed data, as in Table 2b.   

This gives us the overall distribution of people who ate 
tomatoes and people who became sick.  Based on these 
distributions, we can fill in the empty cells of the table with 
the expected values, using the totals as weights.  A com-
puter program will calculate the expected values, but it is 
good to know that these numbers do not just fall out of the 
sky; there is actually a simple method to calculate them!   

Expected Value     =     Row Total x Column Total 
       Grand Total 

For the first cell, people who ate tomatoes and became ill: 

Expected Value     =       130 x 60     =     26 
   300   

We can use this formula to calculate the expected values 
for each of the cells, as shown in Table 2c.  

To calculate the chi-square statistic, you use the observed 
values from Table 2a and the expected values that we 
calculated in Table 2c.  You use this formula:  [(Observed – 
Expected)2/ Expected] for each cell in the table, as in Ta-
ble 2d.  Then you add these numbers together to find the 
chi-square statistic.  

  

  Yes No Total 

Tomatoes 130 x 60 = 26 
     300  

130 x 240 = 104 
     300  130 

No        
Tomatoes 

170 x 60 = 34 
     300  

170 x 240 = 136 
     300  170 

Total 60 240 300 

Salmonella? 

Table 2c.  Expected values for exposure to tomatoes  

  

  Yes No Total 

Tomatoes   130 

No Tomatoes   170 

Total 60 240 300 

Salmonella? 

Table 2b.  Row and column totals for tomatoes and 
Salmonella infection  

  

  Yes No Total 

Tomatoes 41 89 130 

No Tomatoes 19 151 170 

Total 60 240 300 

Salmonella? 

Table 2a.  Sample Cohort study: Exposure to tomatoes 
and Salmonella infection 
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The chi-square (χ2) for this example is 19.2 ( 8.7 + 2.2 + 
6.6 + 1.7 = 19.2).  What exactly does this number tell you?  
In general, the higher the chi-square value, the greater the 
likelihood that there is a statistically significant difference 
between the two groups you are comparing.  To know for 
sure, though, you need to look up the p-value in a chi-
square table.  We will talk about the p-value and how the 
p-value is related to the chi-square test in the section be-
low.  First, though, let’s talk about different types of chi-
square tests. 

Many computer programs give several types of chi-square 
tests.  Each of these chi-square tests is best suited to cer-
tain situations.  

The most commonly calculated chi-square test is Pear-
son’s chi-square, or the uncorrected chi-square.  In fact, if 
you see output that is simply labeled “chi-square,” it is 
likely that it is actually Pearson’s chi-square.  A general 
rule of thumb is to use Pearson’s chi square when you 
have a fairly large sample (>100).  For a 2x2 table, the 
computer takes some shortcuts when calculating the chi-
square, which does not work so well for smaller sample 
sizes but does make things faster to calculate.  

The figure to the right identifies the types of tests to use in 
different situations.  If you have a sample with less than 
30 people or if one of the cells in your 2x2 tables is less 
than 5, you will need to use Fisher’s Exact Test instead of 
a chi-square test.  If you have matched or paired data, you 
should use McNemar’s Test instead of a standard chi-
square test (we’ll talk more about McNemar’s Test in the 
next issue of FOCUS).   

Below are a few examples of studies that compared two 
groups using a chi-square test or Fisher’s exact test.  In 
each study, the investigators chose the type of test that 
best applied to the situation.  Remember that the chi-
square value is used to determine the corresponding p-
value.  Many studies, including the ones below, report only 
the p-value rather than the actual chi-square value.  

• Pearson (Uncorrected) Chi-Square : A North Carolina 
study investigated 955 individuals referred to the De-
partment of Health and Human Services because they 
were partners of someone who tested positive for HIV.  
The study found that the proportion of partners who 
got tested for HIV differed significantly by race/
ethnicity (p-value <0.001).  The study also found that 
HIV-positive rates did not differ by race/ethnicity 
among the 610 who were tested (p = 0.4). (6) 

• Yates (Corrected) Chi-Square: In an outbreak of Salmo-
nella gastroenteritis associated with eating at a res-
taurant, 14 of 15 ill patrons studied had eaten the 
Caesar salad, while 0 of 11 well patrons had eaten the 
salad (p-value <0.01).  The dressing on the salad was 
made from raw eggs that were probably contaminated 
with Salmonella. (7) 

• Fisher’s Exact Test: A study of Group A Streptococcus 
(GAS) among children attending daycare found that 7 
of 11 children who spent 30 or more hours per week 
in daycare had laboratory-confirmed GAS, while 0 of 
4 children spending less than 30 hours per week in 
daycare had GAS (p-value <0.01). (8) 

P-Values   

Let’s get back to our hypothetical cruise ship Salmonella 
outbreak.  In our example, 32% of the people who ate to-
matoes got Salmonella infection, compared to 11% of the 
people who did not eat tomatoes.  (Although 32% and 11% 
look like they are different, we will need to check this with 
a statistical test.  Often looks can be deceiving.)   How do 

Parade of 
Statistics Guys 

 

The right test... To use when…. 

Pearson’s chi-square 
(uncorrected)  

Sample size >100 
Expected cell counts > 10 

Yates chi-square 
(corrected)  

Sample size >30 
Expected cell counts ≥ 5 

Mantel-Haenszel 
chi-square 

Sample size > 30 
Variables are ordinal 

Fisher exact Sample size < 30 and/or 
Expected cell counts < 5 

  

  Yes No Total 

Tomatoes (41-26)2 = 8.7 
       26  

(89-104)2 = 2.2 
     104  130 

No        
Tomatoes 

(19-34)2 = 6.6 
       34  

(151-136)2 = 1.7 
      136  170 

Total 60 240 300 

Salmonella? 

Table 2d.  Expected values for exposure to tomatoes  
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we know whether the difference between 32% and 11% is 
a “real” difference?  In other words, how do we know that 
our chi-square value of 19.2 indicates a statistically signifi-
cant difference?  The p-value is our indicator!   

Many statistical tests give both a numeric result (e.g., our 
chi-square value of 19.2) and a p-value.  The p-value is a 
number that ranges between 0 and 1.  So what does the p-
value tell you?  The p-value is the probability of getting the 
result you got, assuming that the two groups you are com-
paring are actually the same.  

In other words, we start by assuming that there is no differ-
ence in outcomes between the groups (e.g., the people 
who ate tomatoes and those who did not).  Then we look at 
the test statistic and p-value to see if they indicate other-
wise.  A low p-value means that, assuming the groups are 
actually the same, the probability of observing these re-
sults just by chance is very small.  Therefore, you can call 
the difference between two groups statistically significant.  
A high p-value means that the two groups were not that 
different.  A p-value of 1 means that there was no differ-
ence at all between the two groups.  

Generally, if the p-value is less than 0.05, the difference 
observed is considered statistically significant.  Although 
this is somewhat arbitrary, we often consider statistically 
significant differences to be real.  If the p-value is below 
0.05, we conclude that the difference observed is a true 
difference and did not happen by chance.  

A number of statistical tests can be employed to obtain the 
p-value.  The test you use depends on the type of data you 
have.  In the section above, we discussed the chi-square 
test.  If the chi-square statistic is small, this indicates that 
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observed and expected data were not very different, and 
the p-value is large (>0.05 , i.e. the difference was not 
statistically significant).  If the chi-square statistic is large, 
this generally means that the p-value is small, and the 
difference could be statistically significant.  

At the beginning of this issue, we mentioned an outbreak 
of E. coli O157:H7 associated with swimming in a lake.  In 
that study, the investigators reported that “case-patients 
were significantly more likely than camper control subjects 
to have taken lake water into the mouth (p-value =0.002) 
and to have swallowed lake water (p-value =0.002).” (1)  
Because the p-values were each less than 0.05, both ex-
posures were considered to be statistically significant risk 
factors. 

 

Analysis of Continuous Data 

Data do not always fit into discrete categories but continu-
ous numeric data can also be of interest in a field investi-
gation.  You might want to compare clinical symptoms be-
tween groups of patients.  For example, you might want to 
compare the temperature (fever) of adult patients with 
that of children.  You could compare the average age of 
patients to the average age of non-patients, or the respira-
tory rate of those who were directly exposed to a chemical 
plume to the rate of those who were not exposed.  

It is possible to make this type of comparison through a 
test called Analysis Of Variance (ANOVA).  Most of the ma-
jor statistical software programs will calculate ANOVA, but 
the output varies slightly in different programs.  Here we 
will discuss the output from Epi Info to introduce the 
ANOVA test and two other useful tests.  Epi Info generates 
3 pieces of information when you conduct a test using 
ANOVA: the ANOVA results, Bartlett’s test, and the Kruskal-
Wallis test.  The next few paragraphs describe how to in-
terpret all of these tests. 
 
ANOVA 

When comparing continuous variables between groups of 
study subjects, a test that results in a p-value is used. 
However, instead of using chi-square tests as we did for 
categorical data, we use a t-test (for comparing 2 groups) 
or an f-test (for comparing 3 or more groups).  The ANOVA 
procedure uses either the t-test or the f-test, depending on 
the number of groups being compared.  A t-test compares 
averages between two groups, takes into account the vari-
ability in each group, and results in a statistic (t) that has a 
p-value.   

For example, let’s say that we are testing age differences 
between 2 groups.  If the groups have very similar average 
ages and a similar “spread” or distribution of age values, 

A cautionary note… 

Statistical tests such as the chi-square are based on 
several assumptions about the data, including inde-
pendence of observations. The assumption of independ-
ence means that the value of one observation does not 
influence the value of another observation.  

If this assumption is not actually true in your study, then 
it is incorrect to use the test. Situations in which the chi-
square test should not be used include: repeat observa-
tions of the same group of people (e.g., pre- and post-
tests) and matched pair designs in which cases and con-
trols are matched on variables such as age and sex. 
These situations require special data analysis methods.  

Luckily for us, in most of the situations we face in field 
epidemiology, the assumptions of the chi-square test are 
met. For example, the people who ate the potato salad 
were not the same people as those who did not eat the 
potato salad. 
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the t-statistic will be relatively small and the p-value will 
not be significant (i.e., it will be >0.05).  If the average 
ages of the 2 groups are quite different, the t-statistic will 
be larger, and the p-value will be smaller.  If the p-value is 
less than 0.05, the groups have significantly different 
ages.  

Bartlett’s Test 

In t-tests and f-tests, there is one critical assumption that 
you should know about.  ANOVA assumes that the two 
groups have similar variances. In other words, the two 
groups have a similar “spread” of age values.  Think of it 
as comparing apples to apples.  As part of the ANOVA 
analysis, the software program conducts a separate test 
just to see if the variances of the two groups are compara-
ble.  This test is called Bartlett’s test for equality of vari-
ance.  The basic assumption for this test is that the vari-
ances are comparable.  

If you see a p-value for the test that is larger than 0.05, 
which is not significant, everything is fine.  You can use the 
results of your ANOVA.  However, if Bartlett’s p-value is 
less than 0.05, the variances in the groups are not the 
same and you cannot use the results of the ANOVA.  In this 
situation there is another test that you can use in place of 
ANOVA: the Kruskal-Wallis test.  

Kruskal-Wallis Test 

In Epi Info, a third test result is given that you will only 
need if Bartlett’s test told you that the variances were not 
similar enough to use ANOVA (i.e., the p-value of Bartlett’s 

test was less than 0.05).  The Kruskal-Wallis test does not 
make assumptions about the variance in the data.  The 
Kruskal-Wallis test does not test averages but examines 
the distribution of the values within each of the groups.  
The test will result in a p-value.  If the p-value is larger than 
0.05, then you can conclude that there is not a significant 
difference between the groups.  If the p-value is less than 
0.05, there is a significant difference between the groups.  
Figure 1 gives a summary of when to use each of these 
tests for analyzing continuous data.  

 

Conclusion 

Analysis of epidemiologic data is a vital link in implicating 
exposures in disease causation.  You could take years’ 
worth of coursework just to learn epidemiologic and statis-
tical methods.  However, in field epidemiology, a few tried 
and true calculations and tests make up the core of ana-
lytic methods.  Here we have presented confidence inter-
vals, p-values, chi-square tests, ANOVA, and their interpre-
tations.  When you master these methods, your field epi 
skills will be among the best! 

The next issue of FOCUS will delve even further into data 
analysis to tackle methods that you can use to control for 
confounding, including matching and logistic regression. 

Figure 1. Decision tree for analysis of continuous data. 
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